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Cross sections for noble-gas-induced Rb spin disorientation are calculated, taking into account second-
order cross terms in the spin-orbit and K-L couplings, as initially proposed by Bernheim. Contrary to Bern-
heim, it is argued that spin-orbit effects are negligible in first order. Using simple wave functions, it is shown 
that the spin-orbit coupling provided by the electric field of the Rb ionic core, when the valence electronic 
orbital is deformed in short-range encounters, is sufficient to yield the observed relaxation rates. For He, the 
calculated disorientation cross section shows agreement to within a factor of 6 with the experimentally deter
mined cross section for depolarization of optically oriented Rb vapor. Moreover, if, for all Rb-rare-gas pairs, 
we assume the same proportionality between the short- and calculated long-range energies at the kinetic 
radius, agreement to within a factor of 6 for Ne, A, Kr and Xe is also obtained. 

I. INTRODUCTION 

TH E depolarization of optically-pumped alkali 
vapors in various buffer gases is a phenomenon 

well known to experimentalists. For example, the dis
orientation of polarized Rb atoms in collisions with 
noble-gas atoms has been the subject of detailed investi
gations.1-2 More recently, similar effects in rare-gas 
Na and rare-gas Cs mixtures3-5 have been studied 
extensively. 

The phenomenon of spin exchange in binary collisions 
where each atom has an unpaired electron is well under
stood in general.6 For some time, however, the mecha
nism by which paramagnetic spherical atoms alter their 
spin direction in collisions with neutral, spinless, 
spherical atoms has remained somewhat as a mystery. 
The first explanation for this type of relaxation was 
proposed by Bernheim,2 who suggested that spin-orbit 
couplings in the rare-gas nuclear Coulomb field during 
collisions cause electronic spin precession (spin-orbit 
relaxation). He then employed semiquantitative argu
ments to explain the orders of magnitude and rare-gas-
dependence of the measured Rb disorientation cross 
sections. To date, no quantitative calculation of the 
cross sections has been published, however. 

The present paper has two purposes. The first is to 
critically review Bernheim's treatment of the problem 
(Sec. I I ) . Whereas, he obtained first- and second-order 
contributions to the spin-flip amplitude, both of which 
appeared to have the same order of magnitude, the 
present paper makes the point that first-order effects, 
while present, are much less important than Bernheim 
supposed. The second-order contributions obtained here 
have the same form as those obtained by Bernheim, but 
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only half the magnitude. Secondly, using the results of 
Sec. II , we shall make quantitative estimates of the Rb 
spin disorientation cross sections (Sees. I l l , IV). Agree
ment with experiment to within a factor of 6 is achieved 
in all cases. One cannot reasonably expect better agree
ment, in view of the number and importance of the 
approximations made in the calculation, and the un
certainties in "known" parameters, such as the gas 
kinetic radii. The fact that such agreement is achieved 
lends weight to the belief that the mechanism by which 
optically pumped Rb vapor is disoriented by inert buffer 
gases is presently well understood. 

II. THEORY OF SPIN ORBIT RELAXATION 

In analyzing spin-orbit disorientation, Bernheim 
proposed two ways in which the relaxation might occur. 
The first of these amounts simply to a statement of the 
fact that as the foreign gas atom passes the alkali, 
the motion of the nuclear charge sets up a fluctuating 
magnetic field in which the alkali spin precesses. The 
interaction Hamiltonian governing this process is 

3C'= (2/io/fc) (ZBe/r1B*)r1B x YBA• Si , (1) 

where e, h, and c have their usual meaning, /xo is the 
Bohr magneton, T\B is the radius vector extending from 
the foreign gas (B) to the valence electron (1), VBA is 
the collision velocity of the noble-gas atom relative to 
the alkali (A), and Si is the spin operator for the alkali 
valence electrons (Si=k/2). According to Bernheim, 
this is the only operator which, in first order, causes 
appreciable spin reorientation. 

One immediately senses an error in this viewpoint, 
however. Even at large separations (overlap and wave 
function deformations being negligible) Bernheim's 
result states that a neutral atom creates a magnetic field 
as it passes an external field point. To the contrary, 
electromagnetic theory states that spherical neutral 
charge distributions produce neither electric nor mag
netic fields at external points. I t is quite obvious, 
therefore, that the rare-gas electronic "drift current" 
must also be taken into account, and when this is 

A 1576 



N O B L E - G A S - I N D U C E D R b S P I N D I S O R I E N T A T I O N A 1 5 7 7 

properly done, Eq. (1) is replaced by 

5C,= -(2/xo/^)E5ixV j5A-S1, (la) 

where now E^i is the electric field associated with the 
noble-gas atom at the position of the alkali valence 
electron. Once again, 3C' yields nonzero diagonal matrix 
elements. However, they are now too small to be 
consequential, being finite only when the colliding 
atoms overlap.7 For the remainder of the paper, there
fore, we shall neglect all first-order spin-orbit effects. 

Bernheim's second-order interaction is derived as 
follows: Consider only the strongest spin-orbit coupling, 
that between the alkali valence electronic spin and its 
orbital motion in the combined fields of the alkali 
positive ion and the noble-gas atom. During the 
collision, while the electronic wave functions are de
formed and during which overlap takes place, the spin-
orbit coupling introduces a further deformation into 
the ground-state eigenfunction, which is characterized 
by a net internal atomic orbital angular momentum L. 
Since the total angular momentum of the collision J is 
conserved, the angular momentum of rigid rotation 
(J— S—L) suffers a change during the collision (S 
denotes the sum of the electronic spin operators). 
In writing the Schrodinger equation for atomic radial 
motion in binary collisions (Born-Oppenheimer approxi
mation), the "centrifugal potential" is (J—S—L)2/27, 
where I is the moment of inertia operator for the 
collision pair. The spin-orbit-induced incremental L 
therefore leads to a corresponding perturbation in 
energy equal to — K-L/7, with8 K= J—S. 

The electronic Hamiltonian relevant to our problem 
is, therefore, 

5 C = 5 C 0 - K - L / / + ( M O A ^ ) E I X P I . S I , (2) 

where 3Co represents the Coulomb and kinetic energies 
for all electrons in the colliding atoms (fixed nuclei), 
Ei is the electric field of all charges (except the valence 

7 An estimate of the cross section derived on the basis of Eq. 
(la) has been carried out for Rb-He collisions. In the calculation, 
exchange is of no importance, since the rare-gas orbitals follow 
their nucleus, and all matrix elements on 3C' involving these 
orbitals consequently vanish. By choosing hydrogenlike orbitals 
for He (see footnote 13) and approximating the Rb valence orbital 
by a constant term plus one linear in the displacement from the 
He nucleus along the interatomic axis, the effective coupling 
3Geff' = 7 ( * ) K - S / / is obtained, with 7(i?)=87r(l/137)2(16/27)2 

XaozRui(R)(dui(R)/dR). The notation here is the same as in 
Eq. (3), et seq. Numerically, for He-Rb collisions, y(bo) «2.3 
X 10~7, leading to a cross section <r»10-29 cm2. Similar arguments 
can be used to show that for Xe-Rb collisions, <r «10~26 cm2 results. 
Comparison with the cross sections listed in Table II therefore 
reveals that first-order effects are negligible. 

8 The above derivation follows J. H. van Vleck, Rev. Mod. 
Phys. 23, 213 (1951). The operator K/I is simply G>, the instan
taneous angular velocity with which the interatomic axis rotates 
during collisions, the — 6>#L interaction governing an effect 
whereby the diatomic rotation generates an internal electronic 
angular momentum. The p-type doubling phenomenon in 2Z-state 
molecules is closely related to spin-orbit relaxation, inasmuch as 
the Hamiltonians governing both phenomena are identical (R. G. 
Brewer, private communication). The energies associated with 
p-type doubling bear simple relationships to phase shifts appearing 
in the calculation of spin-orbit relaxation cross sections. 

electron) at the position of the valence electron, and pi 
is the momentum operator for that electron. If, as in 
some instances, antisymmetrized many-electron eigen-
functions are to be used, the appropriate generalization 
of the spin-orbit operator is 

(jio/hmc)^ Ei x pi • Si, (2a) 
i 

where the indices i successively indicate all electrons 
included in the biatomic wavefunction. 

For the moment, let us assume that we have solved 
the Schrodinger equation for the eigenstates and 
-energies of 3Co, the ground state being denoted by 10), 
excited states by |X). In this representation, the last 
two terms on the right-hand side of Eqs. (2), (2a) have 
no nonzero first-order matrix elements with the ground 
state; however, the second-order energy is nonzero, and 
can be written as an effective KS coupling as follows: 

flW^EKVSy/, (3) 
i 

with y*, a second-order tensor, having elements 

(01 L} | X)(X | Qio/hmc) (E< x p,)* 10) 
7 y ^ = 2 Z / , (4) 

with j , k=x,y, or z. Because of cylindrical symmetry in 
the biatomic groundstate, yl is diagonal in any system 
of coordinates in which one axis coincides with the 
instantaneous interatomic axis. Specifically, if we let 
the z axis coincide with the diatomic figure axis, the 
relations 

7zz{= yxyi== 7xzi== Y ^ = 0 , 

hold, R being the interatomic separation, so that Eq. (3) 
may be written 

3Ceff'=E 7*(tf)(K-S,-tf A , ) / / . 
i 

However, because the component along the figure axis 
of the angular momentum of rigid rotation is always 
zero, we write 

<KW = ZM.R)K.S<//, (6) 
i 

where now 

., N ^ /<0|L|X>-<X|W*^)(E<xp<)|0> 
y%(R) = Tf , (7) 

x E\$ 

which is less than Bernheim's result by a factor 2. 
[Notice also that we have included the 1/7 dependence 
explicitly in Eq. (3), et seq., thereby making y* dimen-
sionless.] Formally, of course, 3C6ff' can be written 

<KW=7(*)K.S/7. (6a) 
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Equations (6) and (7) will be used as the starting point 
in the calculation ofy(R) to follow. 

III. EVALUATION OF THE KS COUPLING STRENGTH 

In determining the relative magnitudes of the various 
contributions to y(R), we shall perform calculations at 
typical interatomic separations—those corresponding 
to the kinetic radii bo for the collision pairs. Sample cal
culations will be carried out for Rb-He, Ne collisions. 
I t is apparent that eigenstate deformations and/or 
overlap effects during collisions must be taken into 
account, inasmuch as 

E E 1 x p < . S , | 0 } = 0 

holds when the colliding atoms are isolated. 

1. Eigenstate Deformations 

One possibility for spin-orbit relaxation arises from 
the fact that Coulomb and exchange forces deform the 
biatomic ground state, in which case y (R) may be finite. 
In the present calculation, overlap effects are neglected 
so that simple product eigenfunctions may be employed 
without antisymmetrization. 

We shall consider two types of interatomic inter
actions which lead to eigenstate deformations. The first 
of these are the long-range Coulomb interactions, 
responsible for dispersion forces and also for correlations 
between the positions of electrons within different 
atoms. The other type consists of short-range inter

actions which yield first-order (repulsive) interaction 
energies and cause atomic deformations without 
necessarily leading to correlations in the instantaneous 
positions of electrons within different atoms. 

Consider, first, deformations caused by long-range 
forces. The interatomic potential energy operator, in 
dipole-dipole approximation, is9 

e2 n 
V'= Z (2ziz1—yiy1—xlx1), (8) 

where the summation includes all noble-gas electrons. 
The coordinates (xiyiZi) and (#<y»Zt) are measured from 
the nuclei of the alkali and noble gas, the z axis being 
coincident with the intermolecular axis. According to 
perturbation theory the ground-state eigenfunction, 
corrected to include terms first-order in V, is 

|0) = «o(D«o(2,3---») 

(Kk\V'\O0) 
-E'-

Kk EK, 
uk(l)uK(2,3,---n), (9) 

where K and k refer to excited noble-gas and alkali states, 
the prime on the summation indicating that the ground 
state (nk) = (00) is omitted from the sum. The only 
alkali states of importance in Eq. (9) are the first excited 
(resonant) P states. For this reason, those states to 
be strongly connected to |0) by the spin-orbit and 
K«L operators are, likewise, product alkali resonant 
P-excited rare-gas states. That is, 

7 ~ £ 
{001 VI Kl)(<cl ILI K T > • (K'V I Whmc) (£ . i / r )Li | K'1")(K'1" | V' | 00) 

(10) 

where 1,1' , and 1" stand for alkali resonant P states, K and K for noble-gas excited states having energy EK, E is 
the alkali resonance energy and Eal is electric field produced by the alkali positive ion acting on the valence electron. 
Denoting the alkali resonant P states by ( l ^ l ^ lg ) and the relevant noble-gas states by (Kx,Ky,Kz), the summation 
in Eq. (10) can readily be reduced to 

T = Z 
(001 VI K.1,><1, | (n0h/2mc) ( £ u / r ) 11,)<K,1.| V100) 

(EK+Ey 
(10a) 

Inasmuch as the fine structure splitting of the alkali replaced by the noble-gas ionization energy 72, 
resonant 2 P states is 

£so(res IP )= (3»0h/2mc){U\ (E^/r) 11.) (11) y(R> 
2/AEdisp(R)\/E50(xes 2P)\ 

and the London dispersion energy for alkali-rare-gas 
systems is9 

< 0 0 | F | / d ) 2 

A £ d i s p ( i ? ) « - E ' 

9\ E+I2 A E+h 
(13) 

KI E.+E 

Substituting into Eq. (13) the appropriate values of 
the dipole-dipole dispersion energy, — Ce/6o6 (see Table 
I) , along with £ s o(5 2 P)(=0.03 eV), E, and I2, 

= - IE 
(00|F'klz)

2 

(12) 
E*+E 

we obtain, assuming that all EK of importance can be 

(7(6o))longrange=8.8X10-8 

is obtained for the Rb-He system. 

9 H. Margenau, Rev. Mod. Phys. 11, 1 (1939). 

(14) 
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We now consider eigenstate deformations arising from 
short-range interactions. Here, alkali excited states 
other than the resonant P states are important. As a 
matter of fact, were all alkali excited (bound) states 
equal in energy, the short-range Coulomb and exchange 
interactions would lead to alkali deformations local to 
the rare-gas atom, but vanishingly small elsewhere. 
Hence, spin-orbit coupling in the field of the Rb nucleus 
would be virtually nonexistent, for in the vicinity of 
the Rb nucleus, the valence electronic state would be 
almost entirely S like in character. A more realistic ap
proach consists of saying that the resonant P states 
have energy 1£, while all other excited bound states have 
energy Z£av, taken to be the mean value of the alkali 
ionization potential and E (for Rb, E=1.58 eV; 
jEav=3.38 eV). Then, if we denote the resonant 
P-wave amplitude in the collision-deformed alkali 
ground state by A, the matrix elements (0|L|X) of 
Eq. (7) are proportional to A, whereas the elements 
(X | (jjLo/hmc)(Ei x pi) 10) are proportional to A(l—E/Eav), 
the "uncompensated" P-wave amplitude near the Rb 
nucleus. The coupling, y(R), found through straight
forward application of Eq. (7) is 

(7CR))sh0rt 
range 

«tA(i?)2(l~£/Eav)ES0(res *P)/E, (15) 
therefore. 

To find the proportion of resonant P state mixed into 
the ground-state eigenfunction of the alkali through 
short-range interactions, a variational calculation is 
employed. The alkali ground state is thought to consist 
of A parts resonant Pz state to 1 part undeformed 
ground state (that is, |0)oc^0+A^i2). The parameter A 
is adjustable, to be chosen so as to minimize the total 
energy of the biatomic system. In the Appendix, it is 
shown that, for R=bo, the total energy is minimized 
when A is given by 

A£s.r.(&o) 
A(ft0)« = (bo/ao), (16) 

(EHEy** 

where AE8.T.(R) represents the short-range interaction 
energy, EH is the ionization potential of hydrogen, and 
aQ the first Bohr radius. The short-range interaction 
energy has been calculated (approximately) for the 
Rb-He collision (see Table I). Thus, the numerical 
value of 7(So), found through straightforward applica
tion of Eqs. (15) and (16), is: 

(T(So) )shor t range«l . lXlO- 4 , (17) 

to be compared with Eq. (14). 

2. Overlap Effects 

We now examine the influence of overlap in spin-orbit 
relaxation. To correctly account for these effects, we 
must first write the electronic ground state (of 3Co) as 

a Slater determinant, as follows: 

*l ( l ) 

*i(2) 

0i(w) 

& ( i ) • 

*>(2) • 

4>*(n) • 

•• *»(1) 

•• 4>n{2) 

• • <t>n{n) 

For simplicity, we shall neglect writing the spin-orbitals 
of the Rb core electrons, letting fa represent the Rb 
valence electronic orbital while fa * • • fa are those of the 
rare gas, which we consider to remain undeformed 
during collisions. Consider, for the moment, that part 
of |0) involving the undeformed ,5-wave contribution 
to fa. Then L, operating individually on each term in 
the expansion of the resulting determinant, yields zero. 
Hence, as before, it is necessary to take into account 
the deformations in fa caused by the interatomic 
interactions.10 

The contributions to y(R) arising from spin-orbit 
interactions in the field of the alkali ion have already 
been calculated above; only minor changes are now 
introduced by taking into account atomic overlap. How
ever, in accounting for overlap, we must also consider 
spin-orbit interactions in the field of the noble-gas atom. 
The calculation is straightforward; only a brief outline 
of the procedure is given here. We assume, as before, 
that fa is well represented by uo+Aui2. We then 
compute the deformations in fa caused by the K-L 
perturbation. (The latter are finite, of course, since 
Lui^O.) At this point fa, modified so as to include the 
K«L-induced deformation, is orthogonalized to the 
rare-gas orbitals through the Schmidt orthogonalization 
procedure. The spin-orbit energy is then simply the 
expectation value of the spin-orbit operator summed 
over all (orthogonalized) orbitals. Since the rare-gas 
orbitals are paired and therefore yield no net contribu
tion, the spin-orbit energy reduces to the expectation 
value on fa (after having been modified to account for 
the K«L perturbation and orthogonalized to the rare-gas 
orbitals). Upon identification of this energy with the 
expectation value of 3Cef/, the following expression for 
y(R) in collisions between the alkali and He, Ne or A 
atoms is obtained: 

W/E, (19) 
K 

where the summation is over all P-state subshells of 
the rare-gas atom. The quantities SoKz and SixKx are 
overlap integrals involving the undeformed alkali 
ground- and resonant Pa-state orbitals, and ESO(K) is the 
calculated11 spin-orbit splitting factor for the /cth rare-

10 This conclusion is independent of whether or not we orthogo-
nalize $i to the rare-gas orbitals (through the Schmidt orthogo
nalization procedure) before operating with L, as can easily be 
seen if one works with the complete determinantal wave function 
at all times. 

1 1D. Y. Smith, Phys. Rev. 133, A1087 (1964). 
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gas subshell. Thus, in Rb-He collisions, 

(7(£o))overlap~0, (20) 

since He has no P-state orbitals. For Ne, however, 
Eq. (19) yields a nonzero result. Through arguments 
similar to those employed in the Appendix, it can be 
shown that 

1 
Su*~—{E/EHy»Sto„ (21) 

ado 

where a is the logarithmic derivative, with respect to r, 
of the Rb 55 orbital at interatomic separation R 
(aao~0.38 for all R values of interest).12 Substituting 
Eq. (21) and A as given by Eq. (16) [using the ap
propriate value of AEg.r. (bo) from Table I ] into Eq. (19), 

(7(&o))overlap~1.7XlO-5 (22) 

is obtained12 for Rb-Ne, which compares with the short-
range contribution for this case, 

(Y(6o))short range ~ 

3.3X10-4 . (23) 
From Eqs. (14), (17), (20), (22), and (23), we con

clude (a) that deformations caused by long-range 
Coulomb interactions lead to negligible spin-orbit 
couplings and (b) for Rb inert-gas collisions in general 
the most important spin-orbit coupling appears to take 
place in the alkali-ionic field, making overlap effects 
secondary in importance. Similarly, for rare-gas-Cs 
collisions, the same conclusions are probably true. For 
the lighter alkalis (Li and possibly Na), however, the 
situation presumably would be reversed, in that spin-
orbit splittings are very much less for those atoms than 
for Rb or the P-states of the heavier noble gases. 
Finally, it should be noted that spin-orbit depolarization 
cross sections in Li-He and Na-He collisions are proba
bly very small indeed, in view of the fact that p orbitals 
are absent in He, and the electric fields involved are 
themselves very small. The observations of Anderson 
and Ramsay3 tend to support this conclusion. 

IV. CROSS SECTIONS FOR SPIN-ORBIT RELAXATION 

In obtaining estimates for the spin-orbit relaxation 
cross sections, the classical path approximation will be 
used. Although the corresponding quantum mechanical 
calculation is straightforward, this step is not justified 
at the present time. For classical paths, assuming all 
collisions to occur with mean relative impact velocity V 
the cross section for relaxation is simply 

a=(4ir/3)[ bdb<t>+(bY, (24) 
Jo 

12 The Rb valence electronic wave function used is that given 
by Callaway and Morgan [J. Callaway and D. F. Morgan, Jr., 
Phys. Rev. 112, 334 (1958)] and Brown's [F. W. Brown, Phys. 
Rev. 44, 214 (1933)] analytic wave functions for Ne have been 
used. 

a factor 2/3 appearing in the above expression as a result 
of spherical averaging. In Eq. (24), <j>+(b) is a phase 
shift governed by 3Cef/, associated with collisions 
characterized by impact parameter b, in which KZSZ 

= + (hK/2). I t is given by 

<h.(b)=(K/2)[ dt(y(t)/I(t)), (25) 
J collision 

with the integral over time taken for classical orbits. 
For order of magnitude estimates, we approximate the 
integral in Eq. (25) by 

f - 0 , b0<b 
dty(t)/I(t) __ , (26) 

J collision = J (bo)/mVb0 , b0 ^ b 

m being the reduced mass of the collision pair. This 
approximation is reasonable, since short-range inter
actions fall off rapidly with intermolecular separation, 
the integral being relatively negligible for collisions 
which are not hard (b>bo). Moreover, the classical 
equations of radial motion are somewhat identical for 
all b<bo at room temperature (centrifugal terms being 
unimportant) and at b~ bo we know y(bo)/mVbo to be 
a good approximation to the integral. Substituting 
Eqs. (26). and (25) into Eq. (24), taking account of the 
fact K=mVb, 

<r~(7(6o)2/12)<7kin (27) 

is obtained, crkm being the gas kinetic cross section, equal 
to 7T&o2. Because of the disappearance of V from Eq. (27), 
the cross sections are, in this approximation, inde
pendent of the collision velocity. Hence, the result 
Eq. (27) can be derived without the assumption of mean 
thermal velocities. 

The short-range interaction energy at the kinetic 
radius has been calculated explicitly for the Rb-He 
collision,13 with the approximation <j>i~ const over the 
volume occupied by the He atom [cf. Eq. (Al), Ap
pendix]. The calculation of AEs.T.(bo) for the heavier 
rare gases is difficult, and will not be attempted at the 
present time. Instead, to estimate A£s>r.(6o) for these 
cases, we shall apply the following rule of thumb: For 
each rare gas-Rb binary pair, the short- and long (R~Q 

and Rrs terms, say) -range energies bear a constant 
ratio to one another at the kinetic radius. Hence, by 
knowing this ratio for He-Rb, AEs.r. (bo) can be esti
mated for other binary pairs, provided that the long-
range force constants are known. Certainly, this pro
cedure for arriving at AEs.r.(#o) cannot claim any real 
accuracy. I t should provide a somewhat realistic 
variation in AEs.r.(&o) with rare-gas species, however. 
By knowing AEa.r.(bo), we now calculate A(bo), y(bo) 
and finally a from Eqs. (16), (15), and (27). 

13 For He, hydrogen-like orbitals with effective nuclear charge 
Z = 27/16 are used. See. L. Pauling and E. B. Wilson, Introduction 
to Quantum Mechanics (McGraw-Hill Book Company, Inc., New 
York, 1935), pp. 184-185. ; 
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TABLE I. Parameters used in the calculation of the Rb 
spin-orbit relaxation cross sections. 

Gas 

He 
Ne 
A 
Kr 
Xe 

&o(A)a 

3.55 
3.66 
3.98 
4.06 
4.30 

C6(ergcm6)b 

30.9 X10~60 

59.4 
242 
349 
557 

C8(ergcm8)b 

5.8 X10-74 

13.0 
57.0 
80.1 

137 

AEt ,.r.(W(eV)« 

0.062 
0.105 
0.245 
0.301 
0.333 

a Based on an assumed Lennard-Jones radius of 4.53 A for Rb (see text), 
and tabulated Lennard-Jones radii (Ref. 14) for rare gases. 

b Reference 15. 
cSee text. 

Parameters pertinent to the numerical calculation 
of a for various noble gases are given in Table I. Here, 
the listed values of bo represent mean values of the Rb 
atomic diameter (taken to be 4.53 A, the interatomic 
spacing in solid Rb) and the Lennard-Jones radii for the 
rare gases.14 C§ and Cg are coefficients for the P - 6 - and 
P~8-dependent long-range interaction energies, after the 
work of Robinson,15 while APs.r.(#o) is the short-range 
interaction energy at the kinetic radius, obtained as 
described in the preceding paragraph. In Table II, we 
have listed the cross sections computed from Eq. (27). 
Also included in this table are the observed cross 
sections for the depolarization of optically pumped Rb 
vapor. 

From Table II, it is apparent that good agreement 

TABLE II. Calculated and observed Rb-noble-gas 
spin-orbit relaxation cross sections. 

Gas 

He 
Ne 
A 
Kr 
Xe 

<7calc(cm2) 

3.8 X10~24 

3.8X10"23 

1.9X10-21 

4.8X10-21 

l.oxio-20 

<Tobs(cm2) 

6.2X10~25a 

5.2X10~23b 

3.7X10-22b 

5.9Xl0~21b 

1.3X10-20b 

a Reference 2. 
b Reference 1. 

with experiment has been achieved, considering the 
crudeness of the estimates. Inasmuch as the cross 
sections involve the squares of fourth-order perturba-
tional energies (two powers in A and one each in the 
K«L and spin-orbit couplings), it is actually quite re
markable that the present agreement with experiment 
is as good as it is. Based on the current results, it is 
probably safe to say that the mechanism for spin dis
orientation in Rb-rare-gas collisions is presently 
reasonably well understood. 
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APPENDIX : THE SHORT RANGE P-STATE 
DEFORMATION PARAMETER 

The problem is to find the fraction A of resonant 
P-state mixed into the undeformed alkali groundstate 
eigenfunction through short-range interactions. The 
variational procedure is employed here, A being chosen 
so as to minimize the total diatomic energy. The rare 
gases are considered to be "hard," in that the energies 
which separate their ground and excited states are so 
large as to prohibit extensive deformations. We there
fore neglect the rare-gas deformations against those of 
the alkali. 

For Rb-rare gas binary pairs separated by a distance 
P, the first-order interaction energy may be written, for 
practical purposes, 

AP8.r.(P)~ (l+c(R)A?E'(R)+A2E 
-c(R)A(l+c(R)A)A(R)E. (Al) 

Here Ef(R) is the calculated short-range interaction 
between an undeformed (A=0) Rb and rare-gas atom, 
A(R) is the sum of the squared overlap integrals, 
similarly associated with only the S-wave amplitude of 
the alkali groundstate, and c(R) is the ratio of the 
resonant P-state amplitude uiz, to the S-wave amplitude 
Uo at the rare-gas nucleus. We assume that the local 
variation in m and u\z is negligible over the noble-gas 
volume. For Rb-rare-gas pairs, A (R)E is sufficiently less 
than E1 (P) and E/c2 that it is permissable to neglect the 
last term in Eq. (Al) as follows: 

AEa.rXR)~ (l+c(R)AyE'(R)+A2E. (A2) 

At any given interatomic separation, all parameters 
(except A) in Eq. (A2) are independent of A. To 
minimize P(P), therefore, we simply set its derivative 
with respect to A equal to zero, with the result 

c(l+cA)E'(R)+AE=0. (A3) 

Upon multiplying Eq. (A3) by (1+cA), we obtain 

cAEs.TXR)+AE=0, (A4) 
or simply 

A(R)=-c(R)(AEa.TXR)/E). (AS) 

To find c(R), we employ the following arguments. 
Consider the sum 

E<0|^|ft><*|2;|0>=<0|^|0> l (A6) 
k 

where now 10) and | k) represent undeformed ground 
and excited states of the isolated ̂ alkali. Because pz is 
Hermitian and 10) real, we have 

<0|jM|0>=(fft/2). (A7) 

Moreover, since 

pM=-(i/h)mZW,z], (A8) 

we obtain, using Eqs. (A6) and (A7), 

ZEk0(0\z\k)2=(h2/2m). (A9) 
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Because the oscillator strength associated with the holds in regions where 10) is appreciable. Accordingly, 
resonant transition is nearly unity for the alkalis, for z= R, the ratio of \le) to |0)is 
Eq. (A9) is virtually equivalent to /2mE\x'2 /R\/ E\ ™ 

(0\z\ky=W2mE), k=U (A10) C(R)=B\V) W W ' ( M 2 ) 

= 0, k^U. 
Combining Eqs. (A12) and (A5), we finally obtain for A 

Consequently, the relation R AES r (R) 
A(R)= . (A13) 

*|0>«((fta/2«fiO)1/2|l.> (All) aQ(EEHyi* 
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One-Dimensional Electron-Phonon Model* 
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The properties of a one-dimensional system of degenerate electrons coupled to long-wavelength phonons 
are investigated. The equivalent model Hamiltonian of Tomonaga, which describes the electrons by density 
waves, is diagonalized to normal modes. These are calculated for the Einstein model and constant coupling, 
and used to get the ground-state energy. A physical interpretation of the model is given. The breakdown of 
the system for strong coupling is discussed. The many-body perturbation theory is used to assess the validity 
of the Tomonaga model. The electron-phonon ground-state energy diagrams may be grouped in two sets as 
Tomonaga and non-Tomonaga. The latter cancel among themselves exactly to a high order. The extent of the 
cancellation in three dimensions is treated in fourth order and found to be significant, but not exact. 

1. INTRODUCTION 

THE properties of an electron-phonon system are 
investigated for the case when the electrons are 

degenerate and the shortest wavelength coupled phonon 
has wave vector kc much smaller than the Fermi 
momentum kf. For these phonons the wavelength is 
large compared to the average electron spacing, and 
the electron density fluctuations which couple to the 
phonons are well-defined collective "sound" waves. 
Most of the work is on a one-dimensional model; Sec. 
10 discusses the possibility of extending the results to 
three dimensions. 

The method of Tomonaga1 is used in Sec. 2 to derive 
an equivalent Hamiltonian for the system where the 
electron kinetic energy for momentum p is Vf \ p |. The 
electron kinetic energy operator is expressed in terms 
of boson operators which create and annihilate electron 
density waves. The validity of the description of the 
electron-phonon system by the Tomonaga Hamiltonian 
is discussed using Tomonaga's results, and an extension 
is given which is proved by perturbation methods in 
Sec. 7. The physical interpretation of the boson kinetic 
operator in Sec. 3 splits the operator into two parts. 
The first gives the Fermi-Thomas energy of degenerate 
electrons with long-wavelength density oscillations; the 

* Work supported in part by a DuPont Research grant. 
t Leeds and Northrup Foundation Predoctoral Fellow. 
1 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544 (1950). 

second is the energy of the collective motion in these 
oscillations. We may consider the description to be a 
dynamical Fermi-Thomas method which accounts for 
the correlations in the long-wavelength motions of the 
electron gas. 

The Tomonaga Hamiltonian is diagonalized by a 
canonical transformation in Sec. 4 into a set of inde
pendent harmonic oscillators, three for each wave 
vector when the electron spin is included as a variable. 
One of the independent modes is a spin density wave 
whose frequency is unaffected by the phonons, because 
it leads to no change in the electron density in space. 
The dispersion curves of the oscillators are calculated 
in a specific model: Einstein-model phonons of fre
quency o), and the electron-phonon vertex matrix 
elements gk taken as constant=g for \k\ <kc and zero 
for \k\ >kc. When Qk = Vf\k\ is not close to a>, the two 
other displaced normal modes contain a phonon and a 
density wave with no spin wrave, one of the modes being 
mainly a phonon and the other mainly a density wave. 
For vf\k\ close to w, neither mode is mainly phonon or 
density fluctuation. The mode which is a phonon 
(density wave) for &fc<̂ co becomes a density wave 
(phonon) for 0/t̂ >w. 

The ground-state energy ET of the system is plotted 
against the coupling strength g and the cutoff mo
mentum kc. It is shown that in the general case, ET is 
analytic in the coupling constant, so that perturbation 


